Slow unloading leads to DNA-bound β2-sliding clamp accumulation in live Escherichia coli cells
نویسندگان
چکیده
The ubiquitous sliding clamp facilitates processivity of the replicative polymerase and acts as a platform to recruit proteins involved in replication, recombination and repair. While the dynamics of the E. coli β2-sliding clamp have been characterized in vitro, its in vivo stoichiometry and dynamics remain unclear. To probe both β2-clamp dynamics and stoichiometry in live E. coli cells, we use custom-built microfluidics in combination with single-molecule fluorescence microscopy and photoactivated fluorescence microscopy. We quantify the recruitment, binding and turnover of β2-sliding clamps on DNA during replication. These quantitative in vivo results demonstrate that numerous β2-clamps in E. coli remain on the DNA behind the replication fork for a protracted period of time, allowing them to form a docking platform for other enzymes involved in DNA metabolism.
منابع مشابه
Clamp loading, unloading and intrinsic stability of the PCNA, beta and gp45 sliding clamps of human, E. coli and T4 replicases.
BACKGROUND The high speed and processivity of replicative DNA polymerases reside in a processivity factor which has been shown to be a ring-shaped protein. This protein ("sliding clamp') encircles DNA and tethers the catalytic unit to the template. Although in eukaryotic, prokaryotic and bacteriophage-T4 systems, the processivity factors are ring-shaped, they assume different oligomeric states....
متن کاملSingle-molecule visualization of fast polymerase turnover in the bacterial replisome
The Escherichia coli DNA replication machinery has been used as a road map to uncover design rules that enable DNA duplication with high efficiency and fidelity. Although the enzymatic activities of the replicative DNA Pol III are well understood, its dynamics within the replisome are not. Here, we test the accepted view that the Pol III holoenzyme remains stably associated within the replisome...
متن کاملContributions of the individual hydrophobic clefts of the Escherichia coli β sliding clamp to clamp loading, DNA replication and clamp recycling
The homodimeric Escherichia coli beta sliding clamp contains two hydrophobic clefts with which proteins involved in DNA replication, repair and damage tolerance interact. Deletion of the C-terminal five residues of beta (beta(C)) disrupted both clefts, severely impairing interactions of the clamp with the DnaX clamp loader, as well as the replicative DNA polymerase, Pol III. In order to determi...
متن کاملcryo-EM structures of the E. coli replicative DNA polymerase reveal its dynamic interactions with the DNA sliding clamp, exonuclease and τ
The replicative DNA polymerase PolIIIα from Escherichia coli is a uniquely fast and processive enzyme. For its activity it relies on the DNA sliding clamp β, the proofreading exonuclease ε and the C-terminal domain of the clamp loader subunit τ. Due to the dynamic nature of the four-protein complex it has long been refractory to structural characterization. Here we present the 8 Å resolution cr...
متن کاملThe Escherichia coli Clamp Loader Can Actively Pry Open the β-Sliding Clamp*
Clamp loaders load ring-shaped sliding clamps onto DNA. Once loaded onto DNA, sliding clamps bind to DNA polymerases to increase the processivity of DNA synthesis. To load clamps onto DNA, an open clamp loader-clamp complex must form. An unresolved question is whether clamp loaders capture clamps that have transiently opened or whether clamp loaders bind closed clamps and actively open clamps. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 5 شماره
صفحات -
تاریخ انتشار 2014